Article 10117

Title of the article

A RESEARCH OF IMPURITY WITH NONMETALLIC INCLUSIONS IN LARGE INGOTS OF
38ХН3МФА STEEL WEIGHING 24,2 TONS 

Authors

Gamanyuk Sergey Borisovich,  Candidate of engineering sciences, senior staff scientist, sub-department of materials technology, Volgograd State Technical University (28 Lenina avenue, Volgograd, Russia), gamanuk@mail.ru
Rutskiy Dmitriy Vladimirovich,  Candidate of engineering sciences, associate professor, sub-department of materials technology, Volgograd State Technical University (28 Lenina avenue, Volgograd, Russia), tecmat@vstu.ru
Zyuban Nikolay Aleksandrovich, Doctor of engineering sciences, professor, head of sub-department of materials technology, Volgograd State Technical University (28 Lenina avenue, Volgograd, Russia), tecmat49@vstu.ru
Kirilichev Mikhail Vladimirovich, Postgraduate student, Volgograd State Technical University (28 Lenina avenue, Volgograd, Russia), tecmat@vstu.ru

Index UDK

 669-194.2

DOI

 10.21685/2072-3059–2017-1-10

Abstract

Background. Formation of nonmetallic inclusions is directly connected with melt crystallization. This connection influences formation of grain sizes and structure. Correspondigly, there is formed a field of elastic and plastic deformation that determines features and processability of manufactured products. The goal of the present work is to study the influence of changes in geometric parameters of a large ingot on the metal impurity with nonmetallic inclusions by height and section.
Materials and methods. The research objects were two ingots of 38ХН3МФА killed steel weighing 24,2 tons (an ingot of regular geometry) and 22,5 tons (an ingot with concave bottom). Nonmetallic inclusions were identified by the metallographic method. The degree of impurity with nonmetallic inclusions was estimated under a МЕТАМ-РВ-23 microscope on neutral sections using the L method (State Standard 1778-70).
Results and conclusions. The research results show that the general distribution regularity of sulfides and oxysulfides is the presence of a certain interconnection between the indices of impurity with sulfides and oxysulfides by ingot’s height. Nonmetallic inclusions are complex oxide inclusions of manganese, chromium, aluminum, as well as sulfide and oxysulfide inclusions. The use of a concave bottom plate intensifies crystallization processes in the ingot’s bottom part and promotes uniform distribution of nonmetallic inclusions by ingot’s height and section, decrease of the average size of inclusions, which positively influences technological properties of steel.

Key words

 nonmetallic inclusions, strength and plastic properties, large ingot, crystallization, sulfides, oxysulfides.

Download PDF
References

1. Malinochka Ya. N., Bagnyuk L. N., Zdorovets S. A. Akademiya nauk SSSR. Izvestiya. Ser.: Metally [The Academy of Sciences of USSR. Proceedings. Series: Metals]. 1989, no. 1, pp. 76–84.
2. Wang Q., Zhang L., Seetharaman S., Yang S., Yang W., Wang Y. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2016, vol. 47, iss. 3, pp. 1594–1612.
3. Gamanyuk S. B. Issledovanie krupnogo kuznechnogo stal'nogo slitka izmenennoy geometrii s tsel'yu povysheniya kachestva metalla pokovok: dis. kand. tekhn. nauk [A research of a large forging steel ingot of altered geometry for metal forging quality improvement purposes: dissertation to apply for the degree of the candidate of engineering sciences]. Volgograd, 2012, 162 p. 
4. Chervyakov A. N., Kiselev S. A. Metallograficheskoe opredelenie vklyucheniy v stali [Metallographic determination of steel inclusions]. Moscow: Metallurgizdat, 1962, 201 p.
5. Vinograd M. I. Vklyucheniya v stali i ee svoystva [Steel inclusions and its properties]. Moscow: Metallurgizdat, 1963, 252 p.
6. Krewerth D., Lippmann T., Weidner A., Biermann H. International Journal of Fatigue.2016,vol. 84, pp.40–52.
7. Zhao W. L., Ma Q. X., Zha S. L. Materials Transactions. 2014, vol. 55, iss. 8, pp. 1324–1331.
8. Yamauchi T., Kudo H., Kishi Y., Ueda S., Yoshida H., Kimura K., Kajikawa K., Suzuki S. Advances in Materials Technology for Fossil Power Plants – Proceedings from the 7th International Conference. Waikoloa, HI; United States, 2014, pp. 333–343.
9. Shevtsova O. A., Zyuban N. A., Rutskiy D. V. Metallurgist. 2011, vol. 54, iss. 11–12, pp. 839–844.
10. Shevtsova O. A., Zyuban N. A., Pegisheva S. A., Rutskiy D. V., Titov K. E., Klyachina N. V. Metallurg [Metallurgist]. 2014, no. 5, pp. 60–63.
11. Lunev V. V., Pirozhkova V. P. Elektrometallurgiya [Electrometallurgy]. 2011, no. 7, pp. 26–30.
12. Shevtsova O. A., Zyuban N. A., Letnikov M. N., Rutskiy D. V. Problemy chernoy metallurgii i materialovedeniya [Problems of ferrous metallurgy and materials science]. 2010, no. 2, pp. 56–60.
13. Zyuban N. A., Kryuchkov O. B. Izvestiya vuzov. Chernaya metallurgiya [University proceedings. Ferrous metallurgy]. 2008, no. 5, pp. 15–18.

 

Дата создания: 08.08.2017 15:52
Дата обновления: 09.08.2017 16:07